QUICKFIX

*quickfix.txt*  For Vim version 6.1.  Last change: 2001 Sep 21


		  VIM REFERENCE MANUAL    by Bram Moolenaar


{Vi does not have any of these commands}

The quickfix commands are not available when the |+quickfix| feature was
disabled at compile time.

This subject is introduced in section |30.1| of the user manual.

1. Using QuickFix commands		|quickfix|
2. The error window			|quickfix-window|
3. Selecting a compiler			|compiler-select|
4. Using more than one list of errors	|quickfix-error-lists|
5. Using :make				|:make_makeprg|
6. The error file format		|error-file-format|
7. The directory stack			|quickfix-directory-stack|
8. Specific error file formats		|errorformats|


1. Using QuickFix commands			*quickfix* *Quickfix* *E42*

Vim has a special mode to speedup the edit-compile-edit cycle.  This is
inspired by the quickfix option of the Manx's Aztec C compiler on the Amiga.
The idea is to save the error messages from the compiler in a file and use
Vim to jump to the errors one by one.  You can then examine each problem and
fix it, without having to remember all the error messages.

If you are using Manx's Aztec C compiler on the Amiga you should do the
following:
- Set the CCEDIT environment variable with the command
	mset "CCEDIT=vim -q"
- Compile with the -qf option.  If the compiler finds any errors, Vim is
  started and the cursor is positioned on the first error.  The error message
  will be displayed on the last line.  You can go to other errors with the
  commands mentioned below.  You can fix the errors and write the file(s).
- If you exit Vim normally the compiler will re-compile the same file.  If you
  exit with the :cq command, the compiler will terminate.  Do this if you
  cannot fix the error, or if another file needs to be compiled first.

If you are using another compiler you should save the error messages in a
file and start Vim with "vim -q filename".  An easy way to do this is with
the ":make" command (see below).  The 'errorformat' option should be set to
match the error messages from your compiler (see below).

The following commands can be used if you are in QuickFix mode:

							*:cc*
:cc[!] [nr]		Display error [nr].  If [nr] is omitted, the same
			error is displayed again.  Without [!] this doesn't
			work when jumping to another buffer, the current buffer
			has been changed, there is the only window for the
			buffer and both 'hidden' and 'autowrite' are off.
			When jumping to another buffer with [!] any changes to
			the current buffer are lost, unless 'hidden' is set or
			there is another window for this buffer.
			The 'switchbuf' settings are respected when jumping
			to a buffer.

							*:cn* *:cnext*
:[count]cn[ext][!]	Display the [count] next error in the list that
			includes a file name.  If there are no file names at
			all, go to the [count] next error.  See |:cc| for
			[!] and 'switchbuf'.

:[count]cN[ext][!]			*:cp* *:cprevious* *:cN* *:cNext*
:[count]cp[revious][!]	Display the [count] previous error in the list that
			includes a file name.  If there are no file names at
			all, go to the [count] previous error.  See |:cc| for
			[!] and 'switchbuf'.

							*:cnf* *:cnfile*
:[count]cnf[ile][!]	Display the first error in the [count] next file in
			the list that includes a file name.  If there are no
			file names at all or if there is no next file, go to
			the [count] next error.  See |:cc| for [!] and
			'switchbuf'.

							*:crewind* *:cr*
:cr[ewind][!] [nr]	Display error [nr].  If [nr] is omitted, the FIRST
			error is displayed.  See |:cc|.

							*:cfirst* *:cfir*
:cfir[st][!] [nr]	Same as ":crewind".

							*:clast* *:cla*
:cla[st][!] [nr]	Display error [nr].  If [nr] is omitted, the LAST
			error is displayed.  See |:cc|.

							*:cq* *:cquit*
:cq[uit]		Quit Vim with an error code, so that the compiler
			will not compile the same file again.

							*:cf* *:cfile*
:cf[ile][!] [errorfile]	Read the error file and jump to the first error.
			This is done automatically when Vim is started with
			the -q option.  You can use this command when you
			keep Vim running while compiling.  If you give the
			name of the errorfile, the 'errorfile' option will
			be set to [errorfile].  See |:cc| for [!].

							*:cl* *:clist*
:cl[ist] [from] [, [to]]
			List all errors that are valid |quickfix-valid|.
			If numbers [from] and/or [to] are given, the respective
			range of errors is listed. A negative number counts
			from the last error backwards, -1 being the last error.
			The 'switchbuf' settings are respected when jumping
			to a buffer.

:cl[ist]! [from] [, [to]]
			List all errors.

							*:mak* *:make*
:mak[e][!] [arguments]	1. If the 'autowrite' option is on, write any changed
			   buffers
			2. An errorfile name is made from 'makeef'.  If
			   'makeef' doesn't contain "##", and a file with this
			   name already exists, it is deleted.
			3. The program given with the 'makeprg' option is
			   started (default "make") with the optional
			   [arguments] and the output is saved in the
			   errorfile (for Unix it is also echoed on the
			   screen).
			4. The errorfile is read
			5. If [!] is not given the first error is jumped to.
			6. The errorfile is deleted.
			7. You can now move through the errors with commands
			   like |:cnext| and |:cprevious|, see above.
			This command does not accept a comment, any "
			characters are considered part of the arguments.

							    *:gr* *:grep*
:gr[ep][!] [arguments]	Just like ":make", but use 'grepprg' instead of
			'makeprg' and 'grepformat' instead of 'errorformat'.
			See |grep|.
			[Unix trivia: The name for the Unix "grep" command
			comes from ":g/re/p", where "re" stands for Regular
			Expression.]
							*:grepa* *:grepadd*
:grepa[dd][!] [arguments]
			Just like ":grep", but instead of making a new list of
			errors the matches are appended to the current list.
			Example: >
				:grep nothing %
				:bufdo grepadd! something %
<			The first command makes a new error list which is
			empty.  The second command executes "grepadd" for each
			listed buffer.  Note the use of ! to avoid that
			":grepadd" jumps to the first error, which is not
			allowed with |:bufdo|.


2. The error window					*quickfix-window*

							*:cope* *:copen*
:cope[n] [height]	Open a window to show the current list of errors.
			When [height] is given, the window becomes that high
			(if there is room).  Otherwise the window is made ten
			lines high.
			The window will contain a special buffer, with
			'buftype' equal to "quickfix".  Don't change this!
			If there already is a quickfix window, it will be made
			the current window.  It is not possible to open a
			second quickfix window.

							*:ccl* *:cclose*
:ccl[ose]		Close the quickfix window.

							*:cw* *:cwindow*
:cw[indow] [height]	Open the quickfix window when there are recognized
			errors.  If the window is already open and there are
			no recognized errors, close the window.


Normally the quickfix window is at the bottom of the screen.  If there are
vertical splits, it's at the bottom of the rightmost column of windows.  To
make it always occupy the full width: >
	:botright cwindow
You can move the window around with |window-moving| commands.
For example, to move it to the top: CTRL-W K
The window will mostly keep its height, ignoring 'winheight' and
'equalalways'.  You can change the height manually (e.g., by dragging the
status line above it with the mouse).

In the quickfix window, each line is one error.  The line number is equal to
the error number.  You can use ":.cc" to jump to the error under the cursor.
Hitting the <CR> key or double-clicking the mouse on a line has the same
effect.  The file containing the error is opened in the window above the
quickfix window.  If there already is a window for that file, it is used
instead.  If the buffer in the used window has changed, and the error is in
another file, jumping to the error will fail.  You will first have to make
sure the window contains a buffer which can be abandoned.

When the quickfix window has been filled, two autocommand events are
triggered.  First the 'filetype' option is set to "qf", which triggers the
FileType event.  Then the BufReadPost event is triggered.  This can be used to
perform some action on the listed errors.  Example: >
	au BufReadPost quickfix  silent g/^/s//\=line(".")." "/
This prepends the line number to each line.  Note the use of "\=" in the
substitute string of the ":s" command, which is used to evaluate an
expression.

Note: Making changes in the quickfix window has no effect on the list of
errors.  'modifiable' is off to avoid making changes.  If you delete or insert
lines anyway, the relation between the text and the error number is messed up.
If you really want to do this, you could write the contents of the quickfix
window to a file and use ":cfile" to have it parsed and used as the new error
list.


3. Selecting a compiler					*compiler-select*

							*:comp* *:compiler*
:compiler {name}		Set options to work with compiler {name}.
				{not available when compiled without the
				|+eval| feature}


What this command actually does is:
- delete the "current_compiler" variable
- execute ":runtime! compiler/{name}.vim"

For writing a compiler plugin, see |write-compiler-plugin|.


TEX COMPILER						*compiler-tex*

Included in the distribution compiler for TeX ($VIMRUNTIME/compiler/tex.vim)
is intended to handle all flavors of TeX formats. If b:tex_flavor or
g:tex_flavor (in this precedence) variable exists, it defines TeX flavor for
:make (actually, this is the name of executed command), and if both variables
do not exist, it defaults to "latex". For example, while editing chapter2.tex
\input-ed from mypaper.tex written in AMS-TeX: >

	:let b:tex_flavor = 'amstex'
	:compiler tex
<	[editing...] >
	:make mypaper

Note that you must specify a name of the file to process as an argument (to
process the right file when editing \input-ed or \include-ed file; portable
solution for substituting % for no arguments is welcome). This is not in the
semantics of make, but you may specify filename without extension ".tex" and
mean this as "make filename.dvi or filename.pdf or
filename.some_result_extension according to compiler"


4. Using more than one list of errors			*quickfix-error-lists*

So far has been assumed that there is only one list of errors.  Actually the
ten last used lists are remembered.  When starting a new list, the previous
ones are automatically kept.  Two commands can be used to access older error
lists.  They set one of the existing error lists as the current one.

						*:colder* *:col* *E380*
:col[der] [count]	Go to older error list.  When [count] is given, do
			this [count] times.  When already at the oldest error
			list, an error message is given.

						*:cnewer* *:cnew* *E381*
:cnew[er] [count]	Go to newer error list.  When [count] is given, do
			this [count] times.  When already at the newest error
			list, an error message is given.

When adding a new error list, it becomes the current list.

When ":colder" has been used and ":make" or ":grep" is used to add a new error
list, one newer list is overwritten.  This is especially useful if you are
browsing with ":grep" |grep|.  If you want to keep the more recent error
lists, use ":cnewer 99" first.


5. Using :make						*:make_makeprg*

The ":make" command executes the command given with the 'makeprg' option.
This is done by passing the command to the shell given with the 'shell'
option.  This works almost like typing

	":!{makeprg} [arguments] {shellpipe} {errorfile}".

{makeprg} is the string given with the 'makeprg' option.  Any command can be
used, not just "make".  Characters '%' and '#' are expanded as usual on a
command-line.  You can use "#<" to insert the current file name without
extension, for example: >
   :set makeprg=make\ #<.o

[arguments] is anything that is typed after ":make".
{shellpipe} is the 'shellpipe' option.
{errorfile} is the 'makeef' option, with ## replaced to make it unique.

The placeholder "$*" can be used for the argument list in {makeprog} if the
command needs some additional characters after its arguments.  The $* is
replaced then by all arguments.  Example: >
   :set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
or simpler >
   :let &mp = 'latex \\nonstopmode \\input\{$*}'
"$*" can be given multiple times, for example: >
   :set makeprg=gcc\ -o\ $*\ $*

The 'shellpipe' option defaults to ">" for the Amiga, MS-DOS and Win32.  This
means that the output of the compiler is saved in a file and not shown on the
screen directly.  For Unix "| tee" is used.  The compiler output is shown on
the screen and saved in a file the same time.  Depending on the shell used
"|& tee" or "2>&1| tee" is the default, so stderr output will be included.

If 'shellpipe' is empty, the {errorfile} part will be omitted.  This is useful
for compilers that write to an errorfile themselves (Manx's Amiga C).

There are some restrictions to the Quickfix mode on the Amiga.  The
compiler only writes the first 25 errors to the errorfile (Manx's
documentation does not say how to get more).  If you want to find the others,
you will have to fix a few errors and exit the editor.  After recompiling,
up to 25 remaining errors will be found.

On the Amiga, if Vim was started from the compiler, the :sh and some :!
commands will not work, because Vim is then running in the same process as the
compiler and stdin (standard input) will not be interactive.

If you insert or delete lines, mostly the correct error location is still
found because hidden marks are used (Manx's Z editor does not do this).
Sometimes, when the mark has been deleted for some reason, the message "line
changed" is shown to warn you that the error location may not be correct.  If
you quit Vim and start again the marks are lost and the error locations may
not be correct anymore.


6. The error file format				*error-file-format*

A template for the errorfile name can be set with the 'makeef' option.  If it
includes "##", Vim will replace this with a number to make it a unique name.

The format of the file from the Aztec compiler is:

	filename>linenumber:columnnumber:errortype:errornumber:errormessage

	filename	name of the file in which the error was detected
	linenumber	line number where the error was detected
	columnnumber	column number where the error was detected
	errortype	type of the error, normally a single 'E' or 'W'
	errornumber	number of the error (for lookup in the manual)
	errormessage	description of the error

					*errorformat* *E372* *E373* *E374*
						*E375* *E376* *E377* *E378*
Another compiler is likely to use a different format.  You should set the
'errorformat' option to a scanf-like string that describes the format.
First, you need to know how scanf works.  Look in the documentation of your
C compiler.  Vim will understand the following conversion characters.
Others are invalid.
	%f		file name (finds a string)
	%l		line number (finds a number)
	%c		column number (finds a number representing character
			column of the error, (1 <tab> == 1 character column))
	%v		virtual column number (finds a number representing
			screen column of the error (1 <tab> == 8 screen
			columns)
	%t		error type (finds a single character)
	%n		error number (finds a number)
	%m		error message (finds a string)
	%r		matches the "rest" of a single-line file message %O/P/Q
	%p		pointer line (finds a sequence of '-', '.' or ' ' and
			uses the length for the column number)
	%*{conv}	any scanf non-assignable conversion
	%%		the single '%' character

The following uppercase conversion characters specify the type of special
format strings.  At most one of them may be given as a prefix at the begin
of a single comma-separated format pattern.
Some compilers produce messages that consist of directory names that have to
be prepended to each file name read by %f (example: GNU make). The following
codes can be used to scan these directory names; they will be stored in an
internal directory stack.					*E379*
	%D		"enter directory" format string; expects a following
			  %f that finds the directory name
	%X		"leave directory" format string; expects following %f

						*errorformat-multi-line*
It is possible to read the output of programs that produce multi-line messages,
ie. error strings that consume more than one line. Possible prefixes are:
	%A		start of a multi-line message (unspecified type)
	%E		start of a multi-line error message
	%W		start of a multi-line warning message
	%I		start of a multi-line informational message
	%C		continuation of a multi-line message
	%Z		end of a multi-line message
	%G		global; useful only in conjunction with '+' or '-'
	%O		single-line file message: overread the matched part
	%P		single-line file message: push file %f onto the stack
	%Q		single-line file message: pop the last file from stack
The codes '+' or '-' can be combined with the uppercase codes above; in that
case they have to precede the letter, eg. '%+A' or '%-G':
	%-		do not include the matching multi-line in any output
	%+		include the whole matching line in the %m error string

The scanf()-like "%*[]" notation is supported for backward-compatibility
with previous versions of Vim.  However, it is also possible to specify
(nearly) any Vim supported regular expression in format strings.
Since meta characters of the regular expression language can be part of
ordinary matching strings or file names (and therefore internally have to
be escaped), meta symbols have to be written with leading '%':
	%\		the single '\' character. Note that this has to be
			escaped ("%\\") in ":set errorformat=" definitions.
	%.		the single '.' character.
	%#		the single '*'(!) character.
	%^		the single '^' character.
	%$		the single '$' character.
	%[		the single '[' character for a [] character range.
	%~		the single '~' character.
When using character classes in expressions (see |/\i| for an overview),
terms containing the "\+" quantifier can be written in the scanf() "%*"
notation. Example: "%\\d%\\+" ("\d\+", "any number") is equivalent to "%*\\d".
Important note: The \(...\) grouping of sub-matches can not be used in format
specifications because it is reserved for internal conversions.

note: By default the difference between upper and lowercase is ignored.  If
you want to match case, add "\C" to the pattern |/\C|.

Some examples for C compilers that produce single-line error outputs:
%f>%l:%c:%t:%n:%m"			for the AztecC.Err file
%f:%l:\ %t%*[^0123456789]%n:\ %m	for Manx/Aztec C error messages
					(scanf() doesn't understand [0-9])
%f\ %l\ %t%*[^0-9]%n:\ %m		for SAS C
\"%f\"\\,%*[^0-9]%l:\ %m		for generic C compilers
%f:%l:\ %m				for GCC
%f:%l:\ %m,%Dgmake[%*\\d]:\ Entering\ directory\ `%f',
%Dgmake[%*\\d]:\ Leaving\ directory\ `%f'
					for GCC with gmake (concat the lines!)
%f(%l)\ :\ %*[^:]:\ %m			old SCO C compiler (pre-OS5)
%f(%l)\ :\ %t%*[^0-9]%n:\ %m		idem, with error type and number
%f:%l:\ %m,In\ file\ included\ from\ %f:%l:,\^I\^Ifrom\ %f:%l%m
					for GCC, with some extras

Extended examples for the handling of multi-line messages are given below,
see |errorformat-Jikes| and |errorformat-LaTeX|.

Note the backslash in front of a space and double quote.  It is required for
the :set command.  There are two backslashes in front of a comma, one for the
:set command and one to avoid recognizing the comma as a separator of error
formats.

The "%f" conversion depends on the current 'isfname' setting.

The "%f" and "%m" conversions have to detect the end of the string.  They
should be followed by a character that cannot be in the string.  Everything
up to that character is included in the string.  But when the next character
is '%' or a backslash, "%f" will look for any 'isfname' character and "%m"
finds anything.  If the "%f" or "%m" is at the end, everything up to the end
of the line is included.

On MS-DOS, MS-Windows and OS/2 a leading "C:" will be included in "%f", even
when using "%f:".  This means that a file name which is a single alphabetical
letter will not be detected.

The "%p" conversion is normally followed by a "^".  It's used for compilers
that output a line like: >
            ^
or >
   ---------^
to indicate the column of the error.  This is to be used in a multi-line error
message.  See |errorformat-javac| for a  useful example.


When defining an "enter directory" or "leave directory" format, the "%D" or
"%X" has to be given at the start of that substring. Vim tracks the directory
changes and prepends the current directory to each erroneous file found with a
relative path.  See |quickfix-directory-stack| for details, tips and
limitations.

To be able to detect output from several compilers, several format patterns
may be put in 'errorformat', separated by commas (note: blanks after the comma
are ignored).  The first pattern that has a complete match is used.  If no
match is found, matching parts from the last one will be used, although the
file name is removed and the error message is set to the whole message.  If
there is a pattern that may match output from several compilers (but not in a
right way), put it after one that is more restrictive.  To include a comma in
a pattern precede it with a backslash (you have to type two in a set command).
To include a backslash itself give two backslashes (you have to type four in a
set command).

							*quickfix-valid*
If a line is detected that does not completely match the 'errorformat', the
whole line is put in the error message and the entry is marked "not valid"
These lines are skipped with the ":cn" and ":cp" commands (unless there is
no valid line at all).  You can use ":cl!" to display all the error messages.

If the error format does not contain a file name Vim cannot switch to the
correct file.  You will have to do this by hand.

If you have a compiler that produces error messages that do not fit in the
format string, you could write a program that translates the error messages
into this format.  You can use this program with the ":make" command by
changing the 'makeprg' option.  For example: >
   :set mp=make\ \\\|&\ error_filter
The backslashes before the pipe character are required to avoid it to be
recognized as a command separator.  The backslash before each space is
required for the set command.


7. The directory stack				*quickfix-directory-stack*

Quickfix maintains a stack for saving all used directories parsed from the
make output. For GNU-make this is rather simple, as it always prints the
absolute path of all directories it enters and leaves. Regardless if this is
done via a 'cd' command in the makefile or with the parameter "-C dir" (change
to directory before reading the makefile). It may be useful to use the switch
"-w" to force GNU-make to print out the working directory before and after
processing.

Maintaining the correct directory is more complicated if you don't use
GNU-make. AIX-make for example doesn't print any information about its working
directory. Then you need to enhance the makefile. In the makefile of lesstiff
their is a command which echos "Making {target} in {dir}". The special problem
here is that it doesn't print informations on leaving the directory and that
it doesn't print the absolute path.

To solve the problem with relative paths and missing "leave directory"
messages Vim uses following algorithm:

1) Check if the given directory is a subdirectory of the current directory.
   If this is true, store it as the current directory.
2) If it is not a subdir of the current directory, try if this is a
   subdirectory of one of the upper directories.
3) If the directory still isn't found, it is assumed to be a subdirectory
   of Vim's current directory.

Additionally it is checked for every file, if it really exists in the
identified directory.  If not, it is searched in all other directories of the
directory stack (NOT the directory subtree!). If it is still not found, it is
assumed that it is in Vim's current directory.

There are limitation in this algorithm. This examples assume that make just
prints information about entering a directory in the form "Making all in dir".

1) Assume you have following directories and files:
   ./dir1
   ./dir1/file1.c
   ./file1.c

   If make processes the directory "./dir1" before the current directory and
   there is an error in the file "./file1.c", you will end up with the file
   "./dir1/file.c" loaded by Vim.

   This can only be solved with a "leave directory" message.

2) Assume you have following directories and files:
   ./dir1
   ./dir1/dir2
   ./dir2

   You get the following:

   Make output			  Directory interpreted by Vim
   ------------------------	  ----------------------------
   Making all in dir1		  ./dir1
   Making all in dir2		  ./dir1/dir2
   Making all in dir2		  ./dir1/dir2

   This can be solved by printing absolute directories in the "enter directory"
   message or by printing "leave directory" messages..

To avoid this problems, ensure to print absolute directory names and "leave
directory" messages.

Examples for Makefiles:

Unix:
    libs:
	    for dn in $(LIBDIRS); do				\
		(cd $$dn; echo "Entering dir '$$(pwd)'"; make); \
		echo "Leaving dir";				\
	    done

Add
    %DEntering\ dir\ '%f',%XLeaving\ dir
to your 'errorformat' to handle the above output.

Note that Vim doesn't check if the directory name in a "leave directory"
messages is the current directory. This is why you could just use the message
"Leaving dir".


8. Specific error file formats			*errorformats*

						*errorformat-Jikes*
Jikes(TM), a source-to-bytecode Java compiler published by IBM Research,
produces simple multi-line error messages.

An 'errorformat' string matching the produced messages is shown below.
The following lines can be placed in the user's |vimrc| to overwrite Vim's
recognized default formats, or see |:set+=| how to install this format
additionally to the default. >

  :set efm=%A%f:%l:%c:%*\\d:%*\\d:,
	\%C%*\\s%trror:%m,
	\%+C%*[^:]%trror:%m,
	\%C%*\\s%tarning:%m,
	\%C%m
<
Jikes(TM) produces a single-line error message when invoked with the option
"+E", and can be matched with the following: >

  :set efm=%f:%l:%v:%*\\d:%*\\d:%*\\s%m
<
						*errorformat-javac*
This 'errorformat' has been reported to work well for javac, which outputs a
line with "^" to indicate the column of the error: >
  :set efm=%A%f:%l:\ %m,%-Z%p^,%-C%.%#
<
						*errorformat-ant*
For ant (http://jakarta.apache.org/) the above errorformat has to be modified
to honour the leading [javac] in front of each javac output line: >
  :set efm=%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#

The 'errorformat' can also be configured to handle ant together with either
javac or jikes.  If you're using jikes, you should tell ant to use jikes' +E
command line switch which forces jikes to generate one-line error messages.
This is what the second line (of a build.xml file) below does: >
  <property name = "build.compiler"       value = "jikes"/>
  <property name = "build.compiler.emacs" value = "true"/>

The 'errorformat' which handles ant with both javac and jikes is: >
  :set efm=\ %#[javac]\ %#%f:%l:%c:%*\\d:%*\\d:\ %t%[%^:]%#:%m,
	   \%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#
<
						*errorformat-jade*
parsing jade (see http://www.jclark.com/) errors is simple: >
  :set efm=jade:%f:%l:%c:%t:%m
<
						*errorformat-LaTeX*
The following is an example how an 'errorformat' string can be specified
for the (La)TeX typesetting system which displays error messages over
multiple lines.  The output of ":clist" and ":cc" etc. commands displays
multi-lines in a single line, leading white space is removed.
It should be easy to adopt the above LaTeX errorformat to any compiler output
consisting of multi-line errors.

The commands can be placed in a |vimrc| file or some other Vim script file,
eg. a script containing LaTeX related stuff which is loaded only when editing
LaTeX sources.
Make sure to copy all lines of the example (in the given order), afterwards
remove the comment lines.  For the '\' notation at the start of some lines see
|line-continuation|.

		First prepare 'makeprg' such that LaTeX will report multiple
		errors; do not stop when the first error has occurred: >
 :set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
<
		Start of multi-line error messages: >
 :set efm=%E!\ LaTeX\ %trror:\ %m,
	\%E!\ %m,
<		Start of multi-line warning messages; the first two also
		include the line number. Meaning of some regular expressions:
		  - "%.%#"  (".*")   matches a (possibly empty) string
		  - "%*\\d" ("\d\+") matches a number >
	\%+WLaTeX\ %.%#Warning:\ %.%#line\ %l%.%#,
	\%+W%.%#\ at\ lines\ %l--%*\\d,
	\%WLaTeX\ %.%#Warning:\ %m,
<		Possible continuations of error/warning messages; the first
		one also includes the line number: >
	\%Cl.%l\ %m,
	\%+C\ \ %m.,
	\%+C%.%#-%.%#,
	\%+C%.%#[]%.%#,
	\%+C[]%.%#,
	\%+C%.%#%[{}\\]%.%#,
	\%+C<%.%#>%.%#,
	\%C\ \ %m,
<		Lines that match the following patterns do not contain any
		important information; do not include them in messages: >
	\%-GSee\ the\ LaTeX%m,
	\%-GType\ \ H\ <return>%m,
	\%-G\ ...%.%#,
	\%-G%.%#\ (C)\ %.%#,
	\%-G(see\ the\ transcript%.%#),
<		Generally exclude any empty or whitespace-only line from
		being displayed: >
	\%-G\\s%#,
<		The LaTeX output log does not specify the names of erroneous
		source files per line; rather they are given globally,
		enclosed in parentheses.
		The following patterns try to match these names and store
		them in an internal stack.  The patterns possibly scan over
		the same input line (one after another), the trailing "%r"
		conversion indicates the "rest" of the line that will be
		parsed in the next go until the end of line is reached.

		Overread a file name enclosed in '('...')'; do not push it
		on a stack since the file apparently does not contain any
		error: >
	\%+O(%f)%r,
<		Push a file name onto the stack. The name is given after '(': >
	\%+P(%f%r,
	\%+P\ %\\=(%f%r,
	\%+P%*[^()](%f%r,
	\%+P[%\\d%[^()]%#(%f%r,
<		Pop the last stored file name when a ')' is scanned: >
	\%+Q)%r,
	\%+Q%*[^()])%r,
	\%+Q[%\\d%*[^()])%r

Note that in some cases file names in the LaTeX output log cannot be parsed
properly.  The parser might have been messed up by unbalanced parentheses
then.  The above example tries to catch the most relevant cases only.
You can customize the given setting to suit your own purposes, for example,
all the annoying "Overfull ..." warnings could be excluded from being
recognized as an error.
Alternatively to filtering the LaTeX compiler output, it is also possible
to directly read the *.log file that is produced by the [La]TeX compiler.
This contains even more useful information about possible error causes.
However, to properly parse such a complex file, an external filter should
be used.  See the description further above how to make such a filter known
by Vim.

						*errorformat-Perl*
In $VIMRUNTIME/tools you can find the efm_perl.pl script, which filters Perl
error messages into a format that quickfix mode will understand.  See the
start of the file about how to use it.



 vim:tw=78:ts=8:ft=help:norl:

Generated by vim2html on Wed Aug 21 20:50:24 EDT 2002